Diamond Smart Cut

UKAM Industrial Superhard Tools

661-257-2288

9 am to 6 pm PST time

SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS with Pilot

For heavy stock removal with right angle grinder

SMART CUT® Diamond Electroplated Hole Saws and Core Drills with optional Pilots. These diamond hole saws feature diamond electroplating with a nickel bond and are available with windows and slots for enhanced performance.

Showing 1 – -1 of 25 results Showing all 25 results Showing the single result No results found
Sort by Price low to high
Filters Sort results
Reset Apply
Image
Item No
Outside Diameter
Quantity
Get Quote
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765001
1/2" (12.7mm)
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765002
9/16"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765003
5/8"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765004
7/8"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765005
1"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765006
1-1/16"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765007
1-1/8"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765008
1-1/8"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765009
1-1/8"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765010
1-3/16"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765011
1-3/16"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765012
1-1/4"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765013
1-3/4"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765014
1-7/8"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765015
2"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765016
2-1/4"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765017
2-1/2"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765018
3"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765019
3-1/4"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765020
3-1/2"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765021
4"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765022
4-1/4"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765023
4-1/2"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765024
5"
Max:
Min: 1
Step: 1
SMART CUT® DIAMOND ELECTROPLATED (NICKEL BOND) HOLE SAWS / CORE DRILLS WITH PILOT
1765025
6”
Max:
Min: 1
Step: 1
Customization Options:
  • Continuous rim or slotted designs
  • Customizable pilot diameters, with or without diamond coating
  • Fully customizable sizes, drilling depths, rim types, shank diameters and lengths, pilot sizes, diamond depths, grit sizes, and keyhole configurations
  • Precision tolerances available for specialized tasks

We also offer customization using standard hole saw brands like STARRETT, NICKLESON, BLACK & DECKER, MILLER FALLS, MILWAUKEE, and DO-ALL. For these, the teeth are replaced with a diamond-plated cutting surface.

Recommended RPMs:
  • 1/2″ to 1-1/4″: 2100 RPM
  • 1-1/4″ to 2″: 1500 to 1700 RPM
  • 2″ to 3″: 1100 RPM
  • 4-1/2″: 600 RPM
  • Larger than 4-1/2″: 250 to 400 RPM (Note: Lower speeds are recommended for harder materials.)
Benefits:
  • Faster & Freer Drilling
  • Minimum Heat Generation
  • Reduce Fiber Pull Out
  • Minimize Material Delamination
  • Minimum Amount of Material Stress
  • Preserve Material Micro Structure
  • Minimum Dust Generation
  • More Accurate Holes

Example of

Custom Diamond Tool for Composites

About Nickel Bond (Electroplated) Tools

Electroplated (nickel bond) diamond products usually have a single layer of diamonds, held by a tough durable nickel alloy. Nickel is frequently used as a base for plating diamond. Because of its excellent strength, toughness and flexibility during the plating process. Electroplated diamond products are able to retain their original shape and dimensions thought their working life. Unlike sintered (meal bond) or resin bond diamond products, where diamond particles are buried in bond and held together by metal or resin binder deep inside.

Electroplating allows diamond particles to protrude from the bond matrix, providing a free, faster cutting action with minimum heat generation.

Its What You Cant See That Makes All The Difference

SMART CUT® technology

How SMART CUT ® Bond Works?

Step 1

Sharpest And Finest Quality Diamonds

Diamonds or CB Crystals are activated only at the exposed layer. As Bond Matrix layer begin to wear out, diamonds in a new Bond Matrix layer are immediately activated, substituting the already used up diamond layer. The SMART CUT ®  Bond Diamond Bond makes sure every diamond is in the right place. and at the right time, working where you need it most.

Step 2

Diamonds or CBN Crystals

The newly exposed diamonds don’t effect diamonds already working on the material. Unlike many other diamond bonds, diamonds in a SMART CUT ®  remains sharp and grow sharper with each cut, prolonging product life and consistent performance.

Step 3

Advanced Formulated Open Diamond Bond Design

This advanced formulated open diamond bond design insures minimal chipping, fast
cut, constant speed of cut, minimal cutting noise, and most important of all, consistent performance.

Faster Cutting Action

Diamond & CBN tools made utilizing SMART CUT® technology are much more aggressive than your conventional tools. They can cut faster, while still leaving behind a smooth finish free of material deformation.

Longer Life

In most cases tools manufactured utilizing SMART CUT® technology, will outlast other conventional material (sintered), resin, and nickel bonded diamond & CBN tools. SMART CUT® diamond & CBN tools are more sturdy than tools manufactured with conventional technologies. They are capable to retain their form and bond configuration all the way through the tools life.

More Consistent Performance

SMART CUT Sintered (Metal Bond) Tools have diamonds crystals oriented and evenly positioned inside bond matrix. Unlike Many Other Tool Types, they wear evenly, and are known for their consistency. You will get consistent cutting speed, and overall consistent performance, with minimum amount of dressing even on the hardest to cut materials

Minimize Chipping & Improve Surface Finish

SMART CUT® Sintered (Metal Bond) Tools have diamonds oriented and evenly distributed in a bond matrix. Providing faster, freer cutting action with minimum heat generation. This translates in improved surface finish and minimum chipping.

Best Performance & Value on the Market​

SMART CUT® Sintered (Metal Bond) Diamond Tools are the best investment you can make! Although they may cost more than some Sintered (Metal Bond) Tools. They will more than pay for themselves in terms of overall performance and provide best Return on Investment.

Manufactured Using The Highest Quality Raw Materials

Only the highest quality synthetic diamonds and raw materials are used in the manufacturing process. The highest quality standards and product consistency is maintained, using sophisticated inspection and measurement equipment.

High Quality & Consistency

Electroplated (Nickel Bond) Tools

Our standard stock program and custom electroplated diamond tools are produced in a clean environment. Steel bodies are machined to very high precision tolerances from hardened steel on newest CNC machines. Only the highest quality raw materials are used in manufacturing process. Utilizing world class quality control, inspection, and measurement equipment. Highly Experienced Engineers and chemists constantly monitor and control all material input & output at all stages of manufacturing process. Insuring product consistency for use in demanding & sensitive applications

We have experience in working in fields challenging fields such: Nano Technology, MEMS, Materials Research, and etc. In last 25 years over 9 million plated tools/parts have been produced. Customers include some of the Leading Fortune 500 companies, Universities, Military, Space Flight Organizations, Laboratories, Advanced Material Fabricating Facilities to small machine shops.

Why Choose Us?

Optimize your application to ultimate level of efficiency

Diamond & CBN Wheel
Selection Variables

Diamond Concentration

Diamond Concentration – Diamond Concentration is still a factor in determining the life and cutting speed of your Diamond Sectioning/Wafering Blade. Higher diamond concentration is recommended and usually used for cutting softer and more abrasive types of materials. However, the trade off is significantly slower cutting speed. Low diamond concentration is recommended and widely used for cutting ultra hard and brittle materials.

Low Diamond Concentration - typically low concentration wafering blades should be for cutting ultra hard and brittle materials such as ceramics and glass. In Low Concentration Wafering Blades, diamond works by fracture process. Pressure on each diamond crystal/particle is higher which provides enough stress to chip off small flakes in the cut.

High Diamond Concentration - High concentration diamond wafering blades are recommended for cutting metals, plastics and polymers. In this application, materials cut by a plowing mechanism. In this applications diamond plough through the material, work hardened strips of materials become brittle and break off. The greater number of diamond by volume, the quicker the cutting action will be. Increasing the number of diamond s also lowers the per unit force. For metals where it is possible to induce deep deformation layers, a lower per unit force is desirable to reduce the deformation during the cut.

Blade Thickness

Wafering blade thickness typically ranges from .006” to .040” (1mm). Thinner and thicker wafering blade are available, frequently from stock upon request. Kef thickness typically increases with blade diameter (in proportion to diameter of the blade). Kerf is the amount of material removed from the material/sample due to the thickness of blade passing though the material/sample. Blade thickness is important for users requiring most minimal amount of material loss during sectioning

For example if the user requires precision position of the cutting plane relative to the detail on the sample (IC circuit for example), a thinner and smaller diameter blade would be best for this application. Blades ranging from 3” to 5” (75mm to 125mm) in diameter and thickness .006” to .015” (0.2mm to 0.4mm) would be bet suited for this purpose. There are large variety of factors that will contribute to optimal blade thickness for your material/application Including your desired cutting speed, load/feed rate, material diameter, thickness, hardness, density, and shape. As well as skill & experience of the operator. Thicker wafering blades are more stiff and can whistand higher loads/feed rates. Another advantage of thicker kerf blades is they are more forgiving to operator error and abuse. Thicker kerf blade are recommended for use in environment where large number of individuals will be sharing and using same equipment. Perfect for less experienced and novice saw operators, such as in University laboratory. .

Diamond Particle/Grit size

Diamond Mesh Size plays a major role in determining your cutting speed, cut quality/surface finish, level of chipping you will obtain, and material microstructure damage you will obtain. Diamond Mesh size does have considerable effect on cutting speed. Coarse Diamonds are larger than finer diamonds and will cut faster. However, the tradeoff is increase in material micro damage. If you are cutting fragile, more delicate materials then finer mesh size diamond wafering blades are recommended.

Bond Type

Metal bonding offers long life and durability, while resin bonding creates less heat, provides better surface finish and is well suited for cutting hard, delicate or brittle materials.

Blade Outside Diameter

typically wafering blade diameters range form 3” (75mm) to 8” (200mm). Wafering blade diameter should be selected based on material diameter and thickness being cut. Smaller diameter wafering blades are thinner than the larger diameter blades and are more prone to bending and warping. Although large diameter blades are thicker, they are typically used for cutting larger and heavier samples at higher loads and speeds than smaller blades

Feed Rates

load/feed rate applied to wafering blades typically vary from 10-1000 grams. Generally, harder specimens are cut at higher loads and speeds (e.g. ceramics and minerals) and more brittle specimens are cut at lower loads and speeds (e.g. electronic silicon substrates). The Speeds/RPM’s you are using, shape/geometry of the specimen, and how the specimen is being clamped/hold in place will affect the load that can be used for your application.

Bond Hardness

Ability of the bond matrix to hold diamonds. As the hardness of the bond is increased, its diamond retention capabilities increase as well. However the trade off is slower cutting speed. Life of the diamond blade is usually increased with hardness of its bond matrix. Bonds are designated on their scale of hardness from Soft, Medium, and Hard. There are dozens of variations and classification schemes based on bond degree of hardness or softness.

Using diamond blades with optimum bond hardness for your application is important to successful precision diamond sawing operation. Bond matrix that is too soft for the material being cut will release diamond particles faster than needed, resulting in faster wear and shorter diamond blade life. On other hand bond matrix that is too hard will result in much slower cutting speeds and require constant dressing to expose the next diamond layer. As rule of thumb, harder materials such as sapphire and alumina generally require a softer bond. Whereas softer and more brittle materials require a harder bond.

Blade Speeds/RPM’s

Most wafering blades are used between 50 to 6,000 RPM’s Typically harder and more denser materials such as Silicon Carbide, are cut at higher RPM’s/speeds Where more brittle materials such as silicon wafers and gallium arsenide are cutting at lower RPM’s. Low Speed saws RPM’s are typically limited from 0 to 600 RPM’s. Where high speed saws offer much large variety of cutting speeds from 0 to 6,000 RPM’s.

Related Products

Recently Viewed Products

ARE YOU USING RIGHT TOOLS

FOR YOUR APPLICATION?

LET US
HELP YOU

HAVING ISSUES WITH

YOUR CURRENT TOOLS?

What you should know

your next diamond tool?

Shopping cart
Sign in

No account yet?

Wishlist
0 items Cart
My account

Improve & Optimize your Diamond & CBN
Tools Return on investment up to 600%

Sign up to receive exclusive usage recommendations, Illustrated Trouble Shooting Guides & Sales

diamond tools manufacturer